Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The ubiquitin system affects agronomic plant traits.

Identifieur interne : 000018 ( Main/Exploration ); précédent : 000017; suivant : 000019

The ubiquitin system affects agronomic plant traits.

Auteurs : Katrina J. Linden [États-Unis] ; Judy Callis [États-Unis]

Source :

RBID : pubmed:32796036

Abstract

In a single vascular plant species, the ubiquitin system consists of thousands of different proteins involved in attaching ubiquitin to substrates, recognizing or processing ubiquitinated proteins, or constituting or regulating the 26S proteasome. The ubiquitin system affects plant health, reproduction, and responses to the environment, processes that impact important agronomic traits. Here we summarize three agronomic traits influenced by ubiquitination: induction of flowering, seed size, and pathogen responses. Specifically, we review how the ubiquitin system affects expression of genes or abundance of proteins important for determining when a plant flowers (focusing on FLOWERING LOCUS C, FRIGIDA, and CONSTANS), highlight some recent studies on how seed size is affected by the ubiquitin system, and discuss how the ubiquitin system affects proteins involved in pathogen or effector recognition with details of recent studies on FLAGELLIN SENSING 2 and SUPPRESSOR OF NPR CONSTITUTIVE 1, respectively, as examples. Finally, we discuss the effects of pathogen-derived proteins on plant host ubiquitin system proteins. Further understanding of the molecular basis of the above processes could identify possible genes for modification or selection for crop improvement.

DOI: 10.1074/jbc.REV120.011303
PubMed: 32796036
PubMed Central: PMC7535913


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The ubiquitin system affects agronomic plant traits.</title>
<author>
<name sortKey="Linden, Katrina J" sort="Linden, Katrina J" uniqKey="Linden K" first="Katrina J" last="Linden">Katrina J. Linden</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology and the Integrative Genetics and Genomics Graduate Group, University of California, Davis, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biology and the Integrative Genetics and Genomics Graduate Group, University of California, Davis, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Callis, Judy" sort="Callis, Judy" uniqKey="Callis J" first="Judy" last="Callis">Judy Callis</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology and the Integrative Genetics and Genomics Graduate Group, University of California, Davis, California, USA jcallis@ucdavis.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biology and the Integrative Genetics and Genomics Graduate Group, University of California, Davis, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32796036</idno>
<idno type="pmid">32796036</idno>
<idno type="doi">10.1074/jbc.REV120.011303</idno>
<idno type="pmc">PMC7535913</idno>
<idno type="wicri:Area/Main/Corpus">000146</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000146</idno>
<idno type="wicri:Area/Main/Curation">000146</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000146</idno>
<idno type="wicri:Area/Main/Exploration">000146</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The ubiquitin system affects agronomic plant traits.</title>
<author>
<name sortKey="Linden, Katrina J" sort="Linden, Katrina J" uniqKey="Linden K" first="Katrina J" last="Linden">Katrina J. Linden</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology and the Integrative Genetics and Genomics Graduate Group, University of California, Davis, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biology and the Integrative Genetics and Genomics Graduate Group, University of California, Davis, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Callis, Judy" sort="Callis, Judy" uniqKey="Callis J" first="Judy" last="Callis">Judy Callis</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology and the Integrative Genetics and Genomics Graduate Group, University of California, Davis, California, USA jcallis@ucdavis.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biology and the Integrative Genetics and Genomics Graduate Group, University of California, Davis, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In a single vascular plant species, the ubiquitin system consists of thousands of different proteins involved in attaching ubiquitin to substrates, recognizing or processing ubiquitinated proteins, or constituting or regulating the 26S proteasome. The ubiquitin system affects plant health, reproduction, and responses to the environment, processes that impact important agronomic traits. Here we summarize three agronomic traits influenced by ubiquitination: induction of flowering, seed size, and pathogen responses. Specifically, we review how the ubiquitin system affects expression of genes or abundance of proteins important for determining when a plant flowers (focusing on
<i>FLOWERING LOCUS C</i>
, FRIGIDA, and CONSTANS), highlight some recent studies on how seed size is affected by the ubiquitin system, and discuss how the ubiquitin system affects proteins involved in pathogen or effector recognition with details of recent studies on FLAGELLIN SENSING 2 and SUPPRESSOR OF NPR CONSTITUTIVE 1, respectively, as examples. Finally, we discuss the effects of pathogen-derived proteins on plant host ubiquitin system proteins. Further understanding of the molecular basis of the above processes could identify possible genes for modification or selection for crop improvement.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">32796036</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>295</Volume>
<Issue>40</Issue>
<PubDate>
<Year>2020</Year>
<Month>Oct</Month>
<Day>02</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>The ubiquitin system affects agronomic plant traits.</ArticleTitle>
<Pagination>
<MedlinePgn>13940-13955</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.REV120.011303</ELocationID>
<Abstract>
<AbstractText>In a single vascular plant species, the ubiquitin system consists of thousands of different proteins involved in attaching ubiquitin to substrates, recognizing or processing ubiquitinated proteins, or constituting or regulating the 26S proteasome. The ubiquitin system affects plant health, reproduction, and responses to the environment, processes that impact important agronomic traits. Here we summarize three agronomic traits influenced by ubiquitination: induction of flowering, seed size, and pathogen responses. Specifically, we review how the ubiquitin system affects expression of genes or abundance of proteins important for determining when a plant flowers (focusing on
<i>FLOWERING LOCUS C</i>
, FRIGIDA, and CONSTANS), highlight some recent studies on how seed size is affected by the ubiquitin system, and discuss how the ubiquitin system affects proteins involved in pathogen or effector recognition with details of recent studies on FLAGELLIN SENSING 2 and SUPPRESSOR OF NPR CONSTITUTIVE 1, respectively, as examples. Finally, we discuss the effects of pathogen-derived proteins on plant host ubiquitin system proteins. Further understanding of the molecular basis of the above processes could identify possible genes for modification or selection for crop improvement.</AbstractText>
<CopyrightInformation>© 2020 Linden and Callis.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Linden</LastName>
<ForeName>Katrina J</ForeName>
<Initials>KJ</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-7710-9803</Identifier>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cellular Biology and the Integrative Genetics and Genomics Graduate Group, University of California, Davis, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Callis</LastName>
<ForeName>Judy</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-0622-078X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cellular Biology and the Integrative Genetics and Genomics Graduate Group, University of California, Davis, California, USA jcallis@ucdavis.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">E3 ligase</Keyword>
<Keyword MajorTopicYN="N">E3 ubiquitin ligase</Keyword>
<Keyword MajorTopicYN="N">deubiquitylation (deubiquitination)</Keyword>
<Keyword MajorTopicYN="N">disease resistance</Keyword>
<Keyword MajorTopicYN="N">flowering</Keyword>
<Keyword MajorTopicYN="N">pathogen response</Keyword>
<Keyword MajorTopicYN="N">plant</Keyword>
<Keyword MajorTopicYN="N">plant biochemistry</Keyword>
<Keyword MajorTopicYN="N">plant defense</Keyword>
<Keyword MajorTopicYN="N">plant physiology</Keyword>
<Keyword MajorTopicYN="N">protein degradation</Keyword>
<Keyword MajorTopicYN="N">protein modification</Keyword>
<Keyword MajorTopicYN="N">protein stability</Keyword>
<Keyword MajorTopicYN="N">seed</Keyword>
<Keyword MajorTopicYN="N">ubiquitin</Keyword>
<Keyword MajorTopicYN="N">ubiquitin-conjugating enzyme (E2 enzyme)</Keyword>
</KeywordList>
<CoiStatement>Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>08</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32796036</ArticleId>
<ArticleId IdType="pii">REV120.011303</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.REV120.011303</ArticleId>
<ArticleId IdType="pmc">PMC7535913</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 May 25;107(21):9909-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20457921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Feb;19(2):433-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17329563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Apr 06;7:11192</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27048938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2014 Mar 20;53(6):893-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24613342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):496-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20018686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2011 Jan;122(1):211-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20838758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Mar;27(3):649-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25757472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 May;11(5):949-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10330478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2019 May;180(1):381-391</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30796160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 May;190(3):653-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21348873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Feb;173(2):1269-1282</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28003326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2019 Oct;31(10):2370-2385</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31439805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2018 Feb;30(2):285-299</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29382771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Mar;24(3):982-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22408073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Jun;162(2):897-906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23645632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Oct;24(10):4205-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23085733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2019 Apr 16;20(8):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30995767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2018 Dec;4(12):997-1009</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30478363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2016 Nov 11;16(1):251</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27835985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Mar;11(3):445-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10072403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2000 Jun;5(6):1003-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10911994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Nov 28;12(11):e0188886</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29182677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13238-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16916932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2018 Sep;4(9):699-710</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30082764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Dec;60(5):757-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19682297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Feb;26(2):665-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24585836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Jan;57(2):279-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18798874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2020 Jan;62(1):70-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31638740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2019 Aug 23;365(6455):793-799</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31439792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta Gen Subj. 2017 Jan;1861(1 Pt A):3053-3060</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27717811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Jun;12(6):963-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10852940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Oct 20;6:8630</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26482222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2018 Nov;19(11):2516-2523</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30011120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2017 Apr;29(4):726-745</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28280093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2007 May;39(5):623-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17417637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Oct;220(1):219-231</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29949665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Nov;15(11):2636-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14576290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Jun;66(11):3353-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25873653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jan;23(1):289-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21282526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2019 Aug 23;365(6455):799-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31439793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2020 May 13;27(5):769-781.e6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32234500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2006 Aug;133(16):3213-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16854975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jun;23(6):2143-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21705640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2012;81:203-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22524316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Feb 22;108(8):3430-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21282611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2019 Aug;24(8):688-699</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31266697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jul 26;110(2):213-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Jun 17;332(6036):1439-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21680842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Feb;19(2):417-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17329565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2017 Aug;15(8):1024-1033</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28097785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 2010 Feb-Mar;89(2-3):169-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20018402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2008 Dec 9;18(23):1824-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19062288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Oct;20(10):2586-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18849490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2020 Jul;227(2):529-544</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32119118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Feb;57(3):522-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18980658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1989 Feb;12(2):227-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24272801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jul 26;110(2):203-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2020 Mar 25;9:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32209225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jan 13;311(5758):222-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16373536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 Jan;221(2):988-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30117535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Sep 17;10:1095</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31608079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2019 Jul 19;10(1):3252</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31324801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2015 Oct 21;15:252</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26490733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Jul 14;10:143</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20626916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Mar 02;11(3):e0150458</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26934377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2018 Feb 1;69(3):493-504.e6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29358080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2014 Apr 24;54(2):263-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24766890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Sep;27(9):2437-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26373454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2020 Jun;226(5):1399-1412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31981419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2008 Sep 23;18(18):1396-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18771922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(7):1979-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19264752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2019 Nov;20(11):1566-1573</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31393057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 May 1;423(6935):74-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12721627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Feb 13;5:42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24592270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12217-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17626179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2851-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16477026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2014 Sep;15(7):737-746</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25275148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):1196-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19091875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2019 Dec 10;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31822614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2001 Oct;14(10):1131-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11605952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Dec;26(12):4763-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25538183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2017 Mar 3;292(9):3543-3551</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28154183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2008 May 15;22(10):1331-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18483219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2016 Oct;88(2):294-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27340941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Adv. 2019 Apr 24;5(4):eaau7246</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31032401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 May;18(3):265-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10377992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2018 Jan;16(1):234-244</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28557341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2017 Jan 15;31(2):197-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28167503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Feb;20(2):292-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18296627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2019 Apr;249(4):1177-1188</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30603792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 May 24;21(10):841-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21514160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Dec;172(4):2504-2515</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27780896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Dec 22;8(1):2259</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29273730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Nov;62(15):5641-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21862478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2020 Jul;25(7):695-713</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32526174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Oct;21(10):3257-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19855050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2018 Oct;30(10):2352-2367</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30242038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2020 Jan;225(1):70-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31135961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2016 Aug 22;2:16128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27548463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2020 Aug 3;39(15):e104915</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32557679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Sep;27(9):2455-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26296966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Ecol Evol. 2019 Mar;3(3):430-439</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30718852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14694-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21873230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>iScience. 2020 Mar 27;23(3):100948</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32169818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Rev Cell Mol Biol. 2019;343:37-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30712674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2018 Oct;4(10):836-846</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30224662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2019 Sep 25;9(1):13843</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31554847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Jul 19;448(7151):370-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17637671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2003 Aug;6(4):334-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12873527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2020 May;18(5):1330-1342</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31733093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Sep;20(9):2307-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18812498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2018 Oct;45(Pt A):162-170</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30064038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2014 Jan 20;24(2):134-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24388849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plants (Basel). 2018 Dec 16;7(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30558374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2013 Jan;198:98-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23199691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Apr 26;8:665</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28491078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Apr 23;27(8):1277-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18388858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 2010 Feb-Mar;89(2-3):200-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20034699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2020 Sep 19;71(18):5377-5388</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32479613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Direct. 2019 Dec 26;3(12):e00194</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31891113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 May;581(7807):199-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32404997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2019 Apr 29;70:435-463</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30795704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Dec;21(12):1635-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18986259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2018 Aug;95(3):504-515</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29770510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2009 Jun;10(6):385-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19424292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 May 25;336(6084):1045-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22628657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Mar;20(3):580-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18375656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jun;138(2):1163-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15908596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Jul 11;5:332</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25071811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Feb 20;115(8):E1906-E1915</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29432171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Jul 26;448(7152):497-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17625569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 May;150(1):12-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19321712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Aug 29;10:1027</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31555308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Jan;26(1):485-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24449689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Nov 1;113(44):12414-12419</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27791139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Nov;24(11):4703-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23170036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2020 Apr;182(4):1582-1596</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31822506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2019 Oct 1;60(10):2129-2140</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31165159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Breed Sci. 2018 Jan;68(1):109-118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29681753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2017 Dec;18(9):1313-1330</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27925369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2020 Jan;225(2):896-912</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31318448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Mar 1;20(5):537-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16510871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2020 Jan;21(1):66-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31756029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2019 Oct;51(10):1540-1548</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31570888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2018 Jun 14;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29901823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2018 Feb 13;18(1):32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29433434</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Linden, Katrina J" sort="Linden, Katrina J" uniqKey="Linden K" first="Katrina J" last="Linden">Katrina J. Linden</name>
</region>
<name sortKey="Callis, Judy" sort="Callis, Judy" uniqKey="Callis J" first="Judy" last="Callis">Judy Callis</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000018 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000018 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32796036
   |texte=   The ubiquitin system affects agronomic plant traits.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32796036" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020